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SUMMARY

A fully coupled two-dimensional subcritical and=or supercritical, viscous, free-surface �ow numerical
model is developed to calculate bed variations in alluvial channels. Vertically averaged free-surface
�ow equations in conjunction with sediment transport equation are numerically solved using an explicit
;nite-volume scheme using transformed grid in order to handle complex geometry �uvial problems.
Convergence is accelerated with use of a multi-grid technique. Firstly the capabilities of the proposed
method are demonstrated by analyzing subcritical and supercritical hydrodynamic �ows. Thereafter, an
analysis of one- and two-dimensional �ows is performed referring to aggradation and scouring. For all
reported test cases the computed results compare reasonably well with measurements as well as with
other numerical solutions. The method is stable, reliable and accurate handling a variety of sediment
transport equations with rapid changes of sediment transport at the boundaries. Copyright ? 2002 John
Wiley & Sons, Ltd.

KEY WORDS: bed morphology; aggradation; scouring; viscous �ow; fully coupled; depth-averaged;
;nite-volume scheme

1. INTRODUCTION

In recent years signi;cant advances have been made in computational �uid dynamics (CFD)
applied to alluvial channels. Scour and deposition in alluvial channels is provoked by the
removal of bed material due to �owing water thus the formation and the evolution of such
channels is governed by the interaction between �ow dynamics and morphological response
of the mobile bed. The �ow pattern of the aforementioned region is highly complex. This
complexity increases as the scouring increases. Moreover, the accurate quantitative estimation
of scour and deposition in alluvial channels is of paramount importance in river control
engineering or in predicting the water surface elevations during �oods. During these �oods,
bridge failures due to local scour of the bed of the river at the nearby regions of piers
and abutments, is usual. Knowledge of the process of development of such scouring and
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72 J. V. SOULIS

deposition, the time necessary to reach the equilibrium state and the maximum depth of scour
are important to protect the hydraulic structures.

The free-surface �ow in the vicinity of hydraulic structures such as bridge piers or abut-
ments is fully three-dimensional. Methodologies for the estimation of bed morphology may be
developed through the application of three-dimensional hydrodynamic models coupled to sedi-
ment transport models. However, fully coupling the three-dimensional hydrodynamic equations
with sediment transport is still a formidable task. The scour around a circular pile exposed
to a steady current using a 3D numerical model incorporated with �-!, shear stress trans-
port (SST) closure (EllipSys3D program) coupled with sediment-continuity equation and a
bedload sediment transport formula has been used by Roulund et al. [1] to predict the scour.
They report fairly good agreement with experimental data. This approach was explored by
Olsen and Melaaen [2] to simulate the growth of the scour hole in the base of a circular
pier. Further veri;cation of the �ow ;eld, which constitutes the basis of the scouring mech-
anism, was needed. Richardson and Panchang [3], simulated the �ow occurring at the base
of a cylindrical bridge pier within a scour hole using a fully three-dimensional hydrody-
namic model (FLOW-3D). They report that quantitative and qualitative agreement between
the studies was quite good. For two-dimensional (depth-averaged) applications a number of
investigators report uncoupled, semi-coupled and fully coupled numerical techniques. Among
them, Struiksma et al. [4], analyzed bed deformation in curved alluvial channels using a two-
dimensional semi-coupled model. Good agreement with the experimental data was reported.
Kassem and Chaudhry [5] compared a 2D fully coupled model with a semi-coupled one us-
ing the well known Beam and Warming alternative-direction implicit scheme to calculate bed
variations in alluvial channels. Computed results compared satisfactorily with experimental re-
sults obtained in a laboratory �ume. Numerous publications are reported for one-dimensional
bed deformation in alluvial channels, amongst them Bhallamudi and Chaudhry [6], Klonidis
and Soulis [7], Farsirotou et al. [8] and others. A review of the state of the art is given in
DeVries et al. [9].

The objective of this research work is to investigate the bed formation in alluvial channels
as well as in regions around bridge piers and abutments using a stable, reliable and accurate
depth-averaged numerical approach. For this purpose a fully coupled hydrodynamic-sediment
transport model is developed. The fully coupled model is the method employed to achieve
solution. Fully coupled models use the current values of �ow and sediment variables, which
have mutual interaction. The �ow equations are solved along with the sediment transport
equation simultaneously in a given time step. In the uncoupled approach, �ow and bed topog-
raphy are treated separately in each time step, during which the bed level is kept unchanged
for �ow simulation. To achieve solution a viscous, explicit, ;nite-volume multi-grid numer-
ical procedure using transformed grid is incorporated. The method is an explicit numerical
technique requiring substantial computational time to achieve solution. However, it is in favor
of an implicit technique as far as the programming complexity is concerned. In an explicit
numerical technique the required CPU time per iteration is small compared to the CPU time
per iteration of an implicit technique. The implicit schemes permit numerical solutions over
large time steps. Overall, an implicit technique is substantially faster to the explicit one.

This paper is an extension and improvement of previous research work on inviscid (it was
assumed that the resistance is due to bottom and bank friction), steady, depth-averaged, sub-
critical and supercritical �ow for open channel calculations developed by Soulis [10]. First,
the hydrodynamic model is veri;ed under subcritical and supercritical two-dimensional �ow,
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2D BED MORPHOLOGY CALCULATIONS 73

thereafter the validation of the proposed model is performed solving problems of aggrada-
tion (one-dimensional �ow) and around abutments (two-dimensional). The bed morphology
predictions are compared with measurements as well as with computed results using other
numerical techniques. With the bed-evolution equation and the time-scale parameter obtained,
it is possible to estimate scour depth and deposition height under diKerent �ow conditions at
various times and locations.

2. HYDRODYNAMIC AND BED MORPHOLOGY EQUATIONS

The governing �ow equations for the physical domain, assuming the �ow to be homogeneous,
incompressible, two-dimensional, viscous with a hydrostatic pressure distribution along the
vertical in channels with a movable bed, is described by a system of non-linear, partial
diKerential equations. In the absence of wind stresses at the water surface and Coriolis forces
these equations are written as,

Et + Fx + Gy = Q (1)

where the variables E; F; G and Q are de;ned in matrix form as follows,

E =




h

hu

hv

(1 − p)zb


 ; F =




hu

hu2 + gh2=2 − �eK

[
2

@(hu)
@x

]

huv − �eK

[
@(hu)

@y
+

@(hv)
@x

]

qsx




G =




hv

huv − �eK

[
@(hu)

@y
+

@(hv)
@x

]

hv2 + gh2=2 − �eK

[
2

@(hv)
@y

]

qsy




; Q =




0

gh(S0x − Sfx)

gh(S0y − Sfy)

0


 (2)

Here x and y represent the Cartesian coordinate positions in the longitudinal and transverse
directions respectively; t is the time; u and v are the depth-averaged velocity components
in the x and y directions; h is the water depth; g is the gravity acceleration; �eK is the
eKective kinematic viscosity, zb is the bed elevation, p is the sediment porosity, qsx and qsy
are the sediment discharge per unit width in the x and y directions, S0x =[(−@zb)=(@x)] and
S0y =[(−@zb)=(@y)] are the channel slopes and Sfx and Sfy are the friction slopes which are
de;ned as,

Sfx =
n2u

√
u2 + v2

h4=3 and Sfy =
n2v

√
u2 + v2

h4=3 (3)
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where n is the Manning’s �ow friction coePcient. Another option utilizes the Chezy’s �ow
friction formula. Changes in bed level, due to longitudinal and transverse imbalances in sedi-
ment discharge, are obtained based on numerical solution of continuity equations for sediment
in the respective directions. By writing the equation for frictional resistance in this way it
was assumed that the resistance is due to bottom friction. The depth-integrated eKective stress
has been neglected in order to eliminate the possibility of introducing numerical smoothing.
Friction losses in unsteady �ow are not signi;cantly diKerent from those in the steady �ow.
For all reported applications the eKective kinematic viscosity �eK is de;ned as,

�eK =
g

C2 h
√

(u2 + v2) (4)

where C =[(h1=6)=n] is the Chezy’s, friction coePcient for �ow. The sediment discharge
may be predicted by one of the following bed-load formulae available in the present
model:

(a) empirical power function of the �ow velocity, Soni et al. [11].
(b) Ackers and White [12].
(c) Engelund and Hansen [13].
(d) Brownlie [14].
(e) Smart [15].

Therefore, some empirical relations have to be used to relate local velocity with local shear
stress and the latter with sediment �ow rate. The reliability of the model is strictly dependent
upon the accuracy of the semi-empirical equations used to evaluate the sediment transport.
There is no solid transport formula valid for all ranges of natural conditions.

3. TRANSFORMATION OF THE UNSTEADY FLOW EQUATIONS

In order to overcome the diPculties and inaccuracies associated with the determination of
�ow characteristics near the �ow boundaries as well as to have the ability to use dense or
sparse computational grid points in prede;ned �ow regions, the governing system of partial
diKerential equations, i.e. Equation (1), are transformed into an equivalent system applied over
a square grid network. Thus, the essence of the presented numerical scheme is that quadri-
laterals in the physical domain will be separately mapped into squares, subsequently called
;nite-volumes, in the computational domain by independent transformations from global (x; y)
to local (�; �) coordinates. Linear shape functions are de;ned in terms of a non-orthogonal
coordinate system (�; �) for the quadrilaterals. Let H be the transformation matrix from the
physical system to the computational, then,

H =

[
x� x�

y� y�

]
(5)

with

J−1 = [H ] (6)
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The following relations hold [10],

x� = J−1�y; x� =−J−1�y; y� = − J−1�x; y� = J−1�x (7)

Under the aforementioned transformation of Equation (1) in the local co-ordinate system (�; �)
they assume the form,

E′
t + F ′

� + G′
� = D′ (8)

where

E′ = J−1




h

hu

hv

(1 − p)zb




F ′ = J−1




hU

hUu + �xgh2=2 − �eK

[
�x2

@(hu)
@x

+ �y

(
@(hu)

@y
+

@(hv)
@x

)]

hUv + �ygh2=2 − �eK

[
�x

(
@(hu)

@y
+

@(hv)
@x

)
+ �y2

@(hv)
@y

]

Qs�




G′ = J−1




hV

hVu + �xgh2=2 − �eK

[
�x2

@(hu)
@x

+ �y

(
@(hu)

@y
+

@(hv)
@x

)]

hVv + �ygh2=2 − �eK

[
�x

(
@(hu)

@y
+

@(hv)
@x

)
+ �y2

@(hv)
@y

]

Qs�




(9)

Q′ = J−1




0

gh(S0x − Sfx)

gh(S0y − Sfy)

0




also U; V; Qs�, and Qs� are velocity and transport components along � and � directions, re-
spectively. The following equations hold,[

u
v

]
= J−1

[
U
V

]
;
[

qsx
qsy

]
= J−1

[
Qs�

Qs�

]
(10)
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4. NUMERICAL SOLUTION PROCEDURE

4.1. Flow discretization

The 2D, depth-averaged unsteady �ow equations are numerically solved using a ‘time-march-
ing’ explicit scheme. This scheme has been extensively used to solve the 2D, compressible
Navier–Stokes equations. Since the governing �ow equations are solved in conservative form,
the scheme is ‘shock-capturing’. A major improvement was obtained by solving the above
�ow and sediment equations in integral form, i.e. by applying the equations of continuity,
�-momentum, �-momentum and sediment to a series of ;nite-volumes with adjacent volumes
sharing a common face. At the end of each time step Rt the net �ux into each elemental
volume is zero, so that overall water mass �ow and sediment transport are conserved and the
changes in momentum are equal to the forces imposed by the boundaries of the system. The
two-dimensional �ow and sediment equations may be written as conservation equations for a
control volume RV of unit height and for a time step Rt as,

−R(J−1h) = [R(J−1hU )R� + R(J−1hV )R�]
Rt

R�R�
(11)

−R(J−1hu) =




R
[
J−1

(
hUu + �x

(
gh2=2 − 2veK

@(hu)
@x

)

−�yveK

(
@(hu)

@y
+

@(hv)
@x

))]
R� +

R
[
J−1

(
hVu + �x

(
gh2=2 − 2veK

@(hu)
@x

)

−�yveK

(
@(hu)

@y
+

@(hv)
@x

))]
R�




Rt
R�R�

(12)

−R(J−1hv) =




R
[
J−1

(
hUv + �y

(
gh2=2 − 2veK

@(hv)
@y

)

−�xveK

(
@(hu)

@y
+

@(hv)
@x

))]
R� +

R
[
J−1

(
hVv + �y

(
gh2=2 − 2veK

@(hv)
@y

)

−�xveK

(
@(hu)

@y
+

@(hv)
@x

))]
R�




Rt
R�R�

(13)

−R[J−1(1 − p)zb] = [R(J−1hQs�)R� + R(J−1hQs�)R�]
Rt

R�R�
(14)
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Figure 1. Notation for the mass �ux balancing across a ;nite volume (cell).

Figure 1 shows the notation used for mass �ux balancing across a ;nite-volume of the �ow.
Similar notation is adopted for the balancing of the �-momentum, �-momentum and sediment
�uxes. Thus, for the water mass �ux, an XFLUX at a point i; j is de;ned as,

(XFLUX)i; j =[(J−1hU )i+1; j + (J−1hU )i; j]
R�
2

(15)

while the YFLUX, at the same point i; j; is de;ned as,

(YFLUX)i; j =[(J−1hV )i; j + (J−1hV )i; j−1]
R�
2

(16)

The terms R(hu) and R(hv) of Equation (11) are de;ned as,

R(J−1hU )= (XFLUX)i; j − (XFLUX)i; j−1 (17)

R(J−1hV )= (YFLUX)i+1; j − (YFLUX)i; j (18)

For the �-momentum, �-momentum and sediment transport �ux balance, corresponding
(XFLUX)i; j and (YFLUX)i; j values are developed. Similar diKerences are applied to all R
terms of Equations (12), (13) and (14). The slopes S0x and S0y are pre-calculated and stored
at the beginning of each time step, while the friction slopes Sfx and Sfy are updated continu-
ously. For all bed and friction slopes averaged values of the appropriate physical quantities are
used. The changes R(J−1h), R(J−1hu), R(J−1hv), and R(J−1zb) are distributed between
the four corners A, B, C and D of the ;nite-volume. Also, and this is crucial in achieving
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convergence, the water depth is calculated using the current ;nite-volume involved and the
downstream one according to,

hn+1
i; j =0:6hn+1

i; j + 0:4 hn+1
i; j+1 (19)

where n + 1 is the current iteration. The decision was made after numerical experimentation
while the edges of the domain are not altered. The calculated changes R(J−1h), R(J−1hu),
R(J−1hv), and R(J−1zb) were not directly used to yield the h; hu; hv and zb values. For all
test runs and in order to stabilize the solution a C1 factor is used for the h and zb calculations
and a C2 factor for the hu and hv calculations. The procedure for the h (or zb) and hu (or
hv) calculation is as follows,

hn+1
i; j = hn

i; j +
Rhn+1

i; j

1 + C1
h0

1;1
Rhn+1

i; j

(20)

(hu)n+1
i; j = (hu)n

i; j +
R(hu)n+1

i; j

1 + C2
(hu)0

1; 1
R(hu)n+1

i; j

(21)

where C1 is typically equal to 0.1 and C2 is 0.025. The upper index 0 denotes initial value.
The numerical scheme was found to be stable over a wide range of C1 and C2 values.
Two spatial smoothing factors operating on longitudinal and tangential �ow directions were
found necessary to be applied in order to maintain numerical stability. The applied smoothing
equations are,

Di; j =(1:0 − Sm�)Di; j + Sm�(Di; j−1 + Di; j+1)=2 (22)

Di; j =(1:0 − Sm�)Di; j + Sm�(Di−1; j + Di+1; j)=2 (23)

Sm� and Sm� being smoothing factors in � and � directions, respectively while D stands for
any of the h; hu; hv and zb. Typical value for either of the smoothing factors is close to
0.0005. This value is determined after numerical experimentation. The smoothing is performed
in all iteration steps by keeping the D value ;xed at its initial value of the under consideration
time step Rt. The applied inlet and outlet �ow conditions are not smoothed.

Computational grid formation requires minimum data. Grid nodes need not be uniformly
spaced in any direction. Flow problems with large gradients of the physical quantities need
dense computational grid formation for ePcient �ow depiction. Then, rather than using a
uniform grid distribution in the tangential direction, grid points may be clustered in high �ow
gradients regions. This reduces the total amount of required grid points.

4.2. The iterative scheme

The full system of algebraic Equations (11)–(14) together with the speci;ed boundary and
initial conditions, constitutes a closed system of equations that can be solved for all computa-
tional points for every time step Rt during the period of computation. Firstly, the geometrical
and physical data are read. The computational grid is then formed. From the initial bed eleva-
tion zb, the initial bottom slopes of the channel are formed. To start the iterations a guessed
linear distribution of the gh2/2 quantity between inlet and outlet �ow boundaries was assumed
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and the u; v velocity components, the water depth h as well as the per unit sediment discharges
qsx and qsy are calculated.

The iterations start by solving the water mass �ux Equation (11), to obtain hn+1 us-
ing old values of un, vn and hn and a corrected water depth is obtained using Equation
(20). Appropriate boundary �ow conditions are applied at inlet and outlet �ow. Equations
(12) and (13) are solved to obtain (hu)n+1 and (hv)n+1 and thereby a new value for un+1

and vn+1 is derived. The appropriate bed load formula is applied and the unit sediment
discharges qsx and qsy are determined. The bed elevation Equation (14) is then solved to
obtain zn+1

b .
Solid boundary conditions are applied requiring no water or sediment �ow to cross per-

pendicular to the solid surface. Also, smoothing factors are applied to the all changes of the
�ow ;eld quantities. All these changes are sent to the appropriate nodes of the ;nite-volume
involved. Finally, two convergence criteria are used and if they are not satis;ed then the
iterations continue. These criteria require that (a) the averaged over the �ow ;eld relative
error based on the axial velocity component drops below 10−6 between successive iterations
and (b) the average change in sediment transport also drops below 10−6 between successive
iterations. The total number of iterations required to achieve convergence strongly depends
on the actual time. For the ;rst few time steps this number was of the order of 30 or so,
depending of course upon the geometrical complexity, �ow discharges and the time step used.
In some cases it was found necessary, due to local errors, to enforce an upper limit concerning
the iterations within the time step Rt, typically 50. As with all time-stepping methods the the-
oretical maximum stable time step Rt is speci;ed according to the Courant–Friedrichs–Lewy
(CFL) criterion,

Rt6

{
min

(
Rx

ui; j +
√

ghi; j
;

Ry
vi; j +

√
ghi; j

)}
FT (24)

where Rx = xi; j − xi; j−1 and Ry = yi+1; j − yi; j. FT is a constant determined after numerical
experimentation. Typical values of it are less than unity. The converged solution, at any given
time step, forms the initial condition for the next time step. Grid reduction tests have shown
that the grid size, i.e. the ratio of Rx to Ry, does not aKect the accuracy of the solution.
However, for extreme Rx=Ry ratios the solution does break down.

4.3. The multi-grid method

In the multi-grid application the corrections to ;ne grid points are transferred to a coarse
grid to maintain the low truncation errors associated with ;ne level of discretizations. The
solution is advanced simultaneously on the coarse and on the ;ne-grid. The coarse grid is
constructed by combining a group of ;nite-volumes into a block. At the end of every time
step the changes Rh, R(hu), R(hv) and Rzb de;ned by Equations (11), (12), (13) and (14)
respectively, are known for each ;nite-volume of the ;ne grid mesh. The changes of the block
can be found by summing the already calculated changes for the ;nite-volumes within the
block. In a typical 2× 2 multi-grid, where the block of ;nite-volumes is IMG× JMG =2× 2
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Figure 2. A 2× 2 block size grid.

(see Figure 2) the values for the block Rh, R(hu), R(hv) and Rzb are determined as follows,

Rh2×2 = Rh1 + Rh2 + Rh3 + Rh4

R(hu)2×2 = R(hu)1 + R(hu)2 + R(hu)3 + R(hu)4

R(hv)2×2 = R(hv)1 + R(hv)2 + R(hv)3 + R(hv)4

Rzb2×2 = Rzb1 + Rzb2 + Rzb3 + Rzb4

(25)
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where subscripts 1; 2; 3 and 4 denote the ;ne mesh control volumes. The changes of the �ow
properties at the ;ne grid points are calculated,

Rhnew
1 = Rh1 + I;ne

2×2Rh2×2

R(hu)new
1 = R(hu)1 + I;ne

2×2R(hu)2×2

R(hv)new
1 = R(hv)1 + I;ne

2×2R(hv)2×2

Rznew
b1

= Rzb1 + I;ne
2×2Rzb2×2

(26)

where I;ne
2×2 is a linear interpolation operator. In general form, a typical relation for this operator

is,

I;ne
IMG; JMG =

1
(IMG + 1)(JMG + 1)

(27)

Calculations using Equation (26) are repeated for the remaining ;nite-volumes 2, 3 and 4 of
the block under consideration. With the multi-grid approach the use of blocks minimizes the
computational work needed to propagate the unsteady waves out of the computational domain
so that a steady state is rapidly reached. The optimum convergence of the proposed multi-grid
method is typically three times faster than a single grid convergence. A 3×3 multi-grid block
was found to be an optimum choice for nearly all currently tested cases. The described multi-
grid procedure is easily applied and requires minimal programming eKort. One does not need
to create coarse grids by, say, removing every other line in the ;ne mesh. Figure 3 shows the
comparisons for the convergence rates for the multi-grid and single grid techniques using a
60× 244 points mesh. Detailed description of the �ow problem is given in Section 5.2. The
single-grid method, after 500 iterations, did not advance the solution below 10−4 per cent.
The 3× 3 multi-grid block scheme achieved convergence after 285 iterations.

4.4. Boundary and initial 3ow conditions

Hydrodynamic boundaries. There are two �ow types of boundary conditions that have to be
satis;ed: (a) the open boundaries and (b) the solid boundaries. For subcritical �ow entrance
at the upstream boundary a ;xed value of the �ow rate and a relative �ow direction are
speci;ed. At the downstream boundary, uniform across the width, water depth is speci;ed. For
supercritical �ow entrance, at the upstream boundary the transverse �ow velocity component
and a uniform across the width water depth are speci;ed along with the total available head.
At the downstream boundary all �ow physical quantities are left free to change. All required
values are extrapolated from the interior grid nodes. To close the problem, the condition of
no water mass �ow across the solid boundaries needs to be applied. The �uxes hV are set
equal to zero across the face of the solid boundary ;nite-volume (easy implementation). The
above conditions proved to be satisfactory for either inviscid or viscous �ow calculations.

Sediment transport and bed elevation boundaries. The application of upstream and down-
stream sediment transport boundaries depends upon the particular application. The condition
of no sediment mass �ow across the solid boundaries needs also to be applied. In this case
the �uxes Qs� are set equal to zero across the face of the solid boundary ;nite-volume. An
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Figure 3. Convergence histories for the Rouse et al. [18] channel.

assumption was made that the sediment is to be transported mainly as bed load. Appropriate
sediment boundary conditions are applied for each test case. Similarly, up- and downstream
bed elevation changes need to be properly applied.

Initial 3ow conditions. To start the unsteady state computations, the values of three hydro-
dynamic primary variables, h; hu and hv at time=0 must be speci;ed at all the grid points.
Also, the initial topography must be speci;ed.

5. COMPUTATIONAL RESULTS AND DISCUSSION

The proposed numerical method for the calculation of viscous, two-dimensional bed mor-
phology was ;rst tested to predict purely hydrodynamic two-dimensional subcritical and su-
percritical �ow problems. Second, the sediment transport equation was fully coupled and
one-dimensional bed morphology problem was tested. Finally, the proposed numerical scheme
was tested to predict the bed morphology around abutments using two-dimensional �ow anal-
ysis. In all tested cases the computed results were validated against measurements and=or
other numerical methods available data.
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Figure 4. Converging–diverging �ume geometry with ‘streamlines’.

5.1. Subcritical 3ow in a linearly converging–diverging 3ume

To investigate the prediction of the proposed numerical scheme it was decided to test it for
subcritical �ow in a linearly converging–diverging laboratory �ume; see Figure 4. The side
wall contraction angle is 10:88◦ giving rise to a relatively high value for [(@b)=(@x)]=−0:192
where b is the channel width. The expansion angle is equal to 21:037◦ giving rise to [(@b)=
(@x)]=0:384. A value for the Chezy �ow friction coePcient C was estimated to be 120.0.
It agrees with published values for a glass sided-iron bed �ume. Experiments were con-
ducted by Soulis et al. [16] along various ‘streamlines’, throughout the �ow ;eld using
diKerent discharges, water depths and bottom slopes. Figures 5 and 6 show the comparison
along the �ume ‘streamline 2’, located 0:05 m away from the lower side wall (Figure 4),
between current method predictions and measured �ow for velocity and water depth, respec-
tively, at Q =20:58× 10−3 m3 s−1 with zero slopes in either directions. The predictions of
a bi-diagonal implicit numerical scheme developed by Panagiotopoulos and Soulis [17] are
also shown. The diverging part of the �ume is a high viscous �ow region with �ow sep-
aration and reversal. Maximum axial velocity predicted values are in the 0:56 m s−1 region
and compare well with measured ones. The comparison between predictions and measure-
ments for depths and velocities is satisfactory, particularly for the converging part of the
�ume.

5.2. Supercritical 3ow in expansion channel

The channel expansion, shown in Figure 7, was used to test the accuracy of the proposed
method for high entrance Froude number (=4:0). Rouse et al. [18] studied experimentally the
above supercritical �ow. A 29× 61 computational grid was used. The actual channel geometry
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Figure 5. Flow velocity comparison between current method predictions, Panagiotopoulos
et al. [17] predictions and measurements for the converging–diverging �ume along

‘streamline 2’at Q =20:58× 10−3 m3 s−1.

is given by the formula,

y
b1

=
1
2

(
x

4:0 b1

)3=2

+
1
2

(28)

where b1 is the half entrance width. At the upstream end, a constant value of the water depth
h1 equal to 1:0 m is speci;ed. A ;xed value of 9:0 m for the total available head is also
speci;ed. The Manning’s roughness coePcient was set equal to 0.012. Relative depth ratio
comparisons between current method predictions using a 29× 61 grid, predictions using an
implicit bi-diagonal scheme, Panagiotopoulos and Soulis [17] and measurements are shown
in Figures 8(a), (b) and (c) for the center line, midstream line (equally distant between
curved line and center line), and curved line, respectively. The Froude number is supercritical
throughout the �ow ;eld. The comparisons are considered to be satisfactory particularly along
the midstream �ow line. The �ow is accelerating and the comparison with measurements is
favorable.
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Figure 6. Water depth comparison between current method predictions, Panagiotopoulos
et al. [17] predictions and measurements for the converging–diverging �ume along

‘streamline 2’ at Q =20:58× 10−3 m3 s−1.

5.3. Aggradation due to sediment overloading

If the equilibrium between water and sediment discharge is disturbed by increasing the sedi-
ment supply rate that enters the �ow, then the aggradation process may take place. The water
�ow is not able to carry away the excessive sediment quantity deposited on the bed, changing
the bed slope. Soni et al. [11] used a laboratory �ume 0.2-m wide and 30.0-m long to study
the bed formation. The bed material consisted of sand with a mean diameter of 0:32 mm.
The Manning’s roughness coePcient n was estimated to be 0.022 and the porosity p of the
sediment bed layer was equal to 0.4. The channel was carrying an initial uniform unit �ow
discharge q0 of 0:02m2 s−1 at a uniform �ow depth h0 of 0:05m. The initial bed slope S0 was
equal to 3:56× 10−3. The sediment discharge per unit width was predicted by the empirical
power function,

qsx = &u' (29)
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Figure 7. Expansion channel geometry for Fr1 = 4:0 after Rouse et al. [18].

where & and ' are empirical constants with values 1:45× 10−3 and 5.0, respectively. The
sediment discharge entering the channel at the upstream end is given as,

Rqsx =4:0qsx0 (30)

where qsx0 is the initial sediment discharge per unit width and Rqsx is the increment of the
sediment discharge.

A spatial step Rx of 1:0 m and 30 reaches were used. The time step Rt was speci;ed
according to Courant–Friedrichs–Lewy (CFL) criterion. The �ow was subcritical. At the up-
stream end a constant water discharge q(0; t)= q0 for all t¿0 was applied while the sediment
discharge qsx(0; t) was set equal to Rqsx for all t¿0. The inlet bed elevation at any time is
calculated,

zbi; 1 = z0i; 1 +
Rt

Rxi;1(1 − p)
(qsxi; 1 − qsxi; 2) (31)

z0i;1 is the initial bed elevation for the current time step. At the downstream end a constant
value for water depth h(L; t)= h0 was speci;ed and the bed elevation was set according to
zb(L; t)= zb0, where L is the total length of the �ume. Figures 9 and 10 show the comparison
between current method predictions, Klonidis and Soulis [7] numerical method predictions and
measurements of water depths and bed elevations respectively, after 2400 s.The comparisons
are satisfactory. After 2400 s, aggradation takes place from inlet down to 15:0 m longitudinal
distance of the tested �ume. This process is also well predicted.
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Figure 8. Water depth comparisons between current method predictions, Panagiotopoulos et al. [17]
predictions and measurements along (a) curved wall, (b) ‘mid-stream line’ and (c) central line, for the

Rouse et al. [18] channel at Fr1 = 4:0, S0x =0:0, S0y =0:0.
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Figure 8. Continued.

5.4. Local scour around abutments

Local scour around abutments results from �ow disturbances introduced by the presence of
the structure. Abutments projecting into a water system produce deep scour holes upstream of
the contraction. Experiments were conducted by Farsirotou [19]. She used a sediment �ume
facility 3.0-m long and 1.50-m wide; see Figure 11. A symmetrical trapezoidal geometry
abutment was placed at one side of the �ume. The abutment length at its base was equal
to 0:50 m while the small base length was 0:10 m and the height is set equal to 0:20 m.
The bed was uniformly covered with material consisting of metallurgical coal having a mean
grain size D50 of 1:10 mm and a speci;c weight Sg of 1.31, while the depth of the covering
material was set equal to 0.10 m. The Manning’s roughness coePcient n was estimated to
be 0.022 and the porosity p of the sediment bed layer was 0.4. The channel was carrying
an initial uniform �ow discharge of 0:050 m3 s−1 with a uniform �ow depth h0 of 0:08 m.
The slope of the �ume bed was set equal to zero. There was no sediment discharge entering
the channel at the upstream end while at the downstream end the bed elevation was free to
change. The applied �ow and geometry conditions resulted in subcritical �ow throughout the
tested �ume. A constant value of water depth h(L; t)= h0 at the downstream end was set for
all t¿0. Pro;les of bed surface elevation were measured at regular time intervals in order to
follow the system evolution.

The numerical results obtained from a ;nite-volume scheme increase in accuracy as the
grid spacing is decreased. It is desirable to increase grid resolution in regions where the
�ow variables exhibit large gradients. Thus, for the abutment problem, the area around it and
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Figure 9. Comparison between computed and measured water level for the
Soni et al. [11] test case after t =2400 s.

downstream to the abutment zone qualify as high-gradient regions. Henceforth, the grid was
dense in this zone.

The inlet bed elevation zbi;1 is updated at each iteration from the nearest points according
to zbi; 1 = 2:0zbi; 2 − zbi; 3 while the outlet bed elevation zbi; jm is also updated at each iteration
from zbi; jm =2:0zbi; jm−1 − zbi; jm−2 .

In the current application the unit sediment discharges qsx and qsy were predicted using the
empirical relation developed by Engelund and Hansen [13],

qsx =
uCbh
pSg

and qsy = qsx
v
u

(32)
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Figure 10. Comparison between computed and measured bed elevation for the
Soni et al. [11] test case after t =2400 s.

Figure 11. Abutment geometry.
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Figure 12. Comparison between current method predictions, Farsirotou [19] predictions and measure-
ments of bed level along the (a) lower wall, (b) center line and (c) upper wall for the abutment at

Q =0:05 m3 s−1 and h2 = 0:08 m after t =300 s.
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Figure 12. Continued.

where Cb is the sediment concentration given by,

Cb =
50Sg(u2 + v2)1=2u3

∗
hg2D50(Sg − 1)2 (33)

with u∗ =
√

gh(S2
fx + S2

fy)1=2 being the shear velocity. The eKective kinematic viscosity was
calculated using Equation (4). Direct comparisons between current method predictions and
measurements after Farsirotou [19] are shown in Figures 12, 13 and 14 along the upper wall
(�at wall), the center line (equally distant between upper and lower walls) and the lower
wall (abutment), after t =300; 600 and 900:0 s, respectively. The results of an integral, fully
coupled numerical method (Farsirotou [19]) are also shown. It must be pointed out that even
if the intensity of scour and deposition are diKerent for diKerent values of the parameters
the process is qualitatively similar. Due to strong �ow acceleration close to the abutment,
maximum scour occurs close to the latter. Downstream �ow still accelerates, although more
slowly, until the contracted section of the abutment is reached. Erosion is mostly concentrated
in this region, while smaller scouring is found in the zone where the vortex sheet develops
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Figure 13. Comparison between current method predictions, Farsirotou [19] predictions and measure-
ments of bed level along the (a) lower wall, (b) center line and (c) upper wall for the abutment at

Q =0:05 m3 s−1 and h2 = 0:08 m after t =600 s.
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Figure 13. Continued.

(downstream of the contracted section). Minimum measured scour depths in the region 1.0
–1:3 m along the abutment are under-predicted by the current method. However, upstream
to the abutment the predictions overestimate the scour depth. This is the rule for all time
results. Taking into account the fact that three-dimensional eKects must play some role in
the actual experimental con;guration, the comparison between measurements and computa-
tions is reasonably satisfactory, though Farsirotou [19] predictions seem to predict better the
measurements in particular abutment regions. In general, the computed results back each other.

6. CONCLUSIONS

A viscous, two-dimensional, fully coupled, ;nite volume, multi-grid, explicit numerical scheme
was developed to solve time-dependent bed deformation in alluvial channels using a trans-
formed computational grid. The numerical technique itself turned out to be �exible concerning
its response to handle rapid changes of sediment transport at the boundaries. Also, the proposed
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Figure 14. Comparison between current method predictions, Farsirotou [19] predictions and measure-
ments of bed level along the (a) lower wall, (b) center line and (c) upper wall for the abutment at

Q =0:05 m3 s−1 and h2 = 0:08 m after t =900 s.
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Figure 14. Continued.

model is straightforward to perform on the computer and can include the detailed geometry
of the river channel. The agreement between predictions with measurements is satisfactory.
Particularly, for the abutment test case reasonable agreement between measured and computed
bed elevations near to the abutment �ow region has been demonstrated. The applied numer-
ical technique directly (fully) coupling hydrodynamic and bed morphology equations proved
to be computationally time consuming. The proposed method is stable, reliable and accurate
although time consuming, handling a variety of sediment transport equations.

APPENDIX A. NOMENCLATURE

The following characters and symbols are used in this paper:

Latin

C =Chezy’s �ow friction coePcient
Cb =sediment concentration
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C1; C2 = constants
D50 =median sediment grain size
FT= time constant
g =acceleration due to gravity
h =�ow depth
J =Jacobian
L = total length of �ume
n =Manning’s �ow friction coePcient
p =sediment porosity
Qs�; Qs� =unit bed load sediment transport in �- and �-directions, respectively
qsx; qsy =unit bed load sediment transport in x- and y-directions, respectively
Sfx; Sfy =friction slopes in x- and y-directions, respectively
Sm� ; Sm� =smoothing factors in x- and y-directions, respectively
Sg =speci;c weight
S0x; S0y =channel slopes in x- and y-directions, respectively
t = time
U; V =depth-averaged velocity components in �- and �-directions
u; v =depth-averaged velocity components in x- and y-directions
u∗ =shear velocity
x; y =Cartesian coordinates, longitudinal and transverse, respectively
zb =bed elevation

Greek

&; ' =constants for empirical power function
H = transformation matrix
I;ne
2×2 = interpolation operator

�eK = eKective kinematic viscosity
�; � = local coordinates

Symbol

1 = inlet �ow conditions
2 =outlet �ow conditions

REFERENCES

1. Roulund A, Sumer BM, Fredsoe J. 3D mathematical modelling of scour around a circular pile in current. In
River Sedimentation, Jayawarden, Lee and Wang (eds). Balkema: Rotterdam, 1999; 131–137.

2. Olsen NRB, Melaaen MC. Three-dimensional calculation of scour around cylinders. J. Hydr. Engrg., ASCE
1993; 119(9):1048–1054.

3. Richardson E, Panchang VG. Three-dimensional simulation of scour-inducing �ow at bridge piers. J. Hydr.
Engrg., ASCE 1998; 124(5):530–540.

4. Struiksma N, Olsen KW, Flokstra C, De Vriend HJ. Bed deformation in curved alluvial channels. J. Hydr.
Res. 1985; 23(11):57–79.

5. Kassem AA, Chaudhry MH. Comparison of coupled and semi-coupled numerical models for alluvial channels.
J. Hydr. Engrg., ASCE 1998; 124(8):794–802.

6. Bhallamudi SM, Chaudhry MH. Numerical modeling of aggradation and degradation in alluvial channels. J.
Hydr. Engrg., ASCE 1991; 117(9):1145–1164.

7. Klonidis AJ, Soulis JV. An implicit numerical scheme for bed morphology calculations. In VII Int. Conference
Computational Methods and Experimental Measurements VIII. Computational Mechanics Publications:
Rhodes, Greece, 1997; 381–390.

Copyright ? 2002 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2002; 38:71–98



98 J. V. SOULIS

8. Farsirotou ED, Soulis JV, Dermissis VD. A numerical algorithm for bed morphology equations. In Int.
Conference European River Development. Budapest, Hungary, 1998.

9. De Vries JW, Klaasen GJ, Struiksma N. On the use of movable bed models for river problems: state of the
art. Symp. River Sedimentation. Beijing, China, 1989.

10. Soulis JV. Multiple grid solution of the open channel �ow equations using a marching ;nite-volume method.
Adv. Water Resources 1991; 14(4):203–214.

11. Soni JP, Garde RJ, Raju KG. Aggradation in streams due to overloading. J. Hydr. Engrg., ASCE 1980;
106(1):117–132.

12. Ackers P, White WR. Sediment transport: a new approach and analysis. Proc. ASCE 1973; 99(HY 11):
2041–2060.

13. Engelund F, Hansen E. A Monograph on Sediment Transport in Alluvial Streams. Teknish Vorlag: Copenhagen,
1967.

14. Brownlie WR. Flow depth in sand bed channels. J. Hydr. Engrg., ASCE 1983; 109(7).
15. Smart GM. Sediment transport formula for steep channels. J. Hydr. Engrg., ASCE 1984; 110(3):267–276.
16. Soulis JV, Alexiou EE, Kounavas EK. Measurements and computations of non-uniform �ow. Tech. Chron.- A

1991; 11(2).
17. Panagiotopoulos AG, Soulis JV. A bidiagonal scheme for depth-averaged free-surface �ow equations. J. Hydr.

Engrg., ASCE 2000; 126(6):425–437.
18. Rouse H, Bhoota BV, Hsu EY. Design of channel expansions. Transactions ASCE 1951; 116:347–363.
19. Farsirotou ED. A numerical and experimental study of scouring and deposition in alluvial channel. Ph.D. Thesis

(in Greek), Civil Engineering Department, Aristotelion University of Thessaloniki, Thessaloniki, Greece, 1999.

Copyright ? 2002 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2002; 38:71–98


